Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 95(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38578244

RESUMO

An X-pinch load driven by an intense current pulse (>100 kA in ∼100 ns) can result in the formation of a small radius, runaway compressional micro-pinch. A micro-pinch is characterized by a hot (>1 keV), current-driven (>100 kA), high-density plasma column (near solid density) with a small neck diameter (1-10 µm), a short axial extent (<1 mm), and a short duration (≲1 ns). With material pressures often well into the multi-Mbar regime, a micro-pinch plasma often radiates an intense, sub-ns burst of sub-keV to multi-keV x rays. A low-density coronal plasma immediately surrounding the dense plasma neck could potentially shunt current away from the neck and thus reduce the magnetic drive pressure applied to the neck. To study the current distribution in the coronal plasma, a Faraday rotation imaging diagnostic (1064 nm) capable of producing simultaneous high-magnification polarimetric and interferometric images has been developed for the MAIZE facility at the University of Michigan. Designed with a variable magnification (1-10×), this diagnostic achieves a spatial resolution of ∼35 µm, which is useful for resolving the ∼100-µm-scale coronal plasma immediately surrounding the dense core. This system has now been used on a reduced-output MAIZE (100-200 kA, 150 ns) to assess the radial distribution of drive current immediately surrounding the dense micro-pinch neck. The total current enclosed was found to increase as a function of radius, r, from a value of ≈50±25 kA at r ≈ 140 µm (at the edge of the dense neck) to a maximal value of ≈150±75 kA for r ≥ 225 µm. This corresponds to a peak magnetic drive pressure of ≈75±50 kbar at r ≈ 225 µm. The limitations of these measurements are discussed in the paper.

2.
J Phys Condens Matter ; 36(20)2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38330460

RESUMO

Nominally-pure lithium fluoride (LiF) crystals were irradiated with monochromatic hard x-rays of energy 5, 7, 9 and 12 keV at the METROLOGIE beamline of the SOLEIL synchrotron facility, in order to understand the role of the selected x-ray energy on their visible photoluminescence (PL) response, which is used for high spatial resolution 2D x-ray imaging detectors characterized by a wide dynamic range. At the energies of 7 and 12 keV the irradiations were performed at five different doses corresponding to five uniformly irradiated areas, while at 5 and 9 keV only two irradiations at two different doses were carried out. The doses were planned in a range between 4 and 1.4 × 103Gy (10.5 mJ cm-3to 3.7 J cm-3), depending on the x-ray energy. After irradiation at the energies of 7 and 12 keV, the spectrally-integrated visible PL intensity of the F2and F3+colour centres (CCs) generated in the LiF crystals, carefully measured by fluorescence microscopy under blue excitation, exhibits a linear dependence on the irradiation dose in the investigated dose range. This linear behaviour was confirmed by the optical absorption spectra of the irradiated spots, which shows a similar linear behaviour for both the F2and F3+CCs, as derived from their overlapping absorption band at around 450 nm. At the highest x-ray energy, the average concentrations of the radiation-induced F, F2and F3+CCs were also estimated. The volume distributions of F2defects in the crystals irradiated with 5 and 9 keV x-rays were reconstructed in 3D by measuring their PL signal using a confocal laser scanning microscope operating in fluorescence mode. On-going investigations are focusing on the results obtained through thisz-scanning technique to explore the potential impact of absorption effects at the excitation laser wavelength.

3.
Rev Sci Instrum ; 94(8)2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38065178

RESUMO

In this paper, we describe a technique using a crystal spectrometer, a silicon-diode detector, and a filtered photoconductive detector to monitor photon energies in the L-shell (0.9-1 keV) and K-shell regimes for nickel and copper hybrid X-pinch x-ray sources. The detectors, system cabling, and an 8 GHz digital oscilloscope in combination enable time resolution better than 200 ps for photoconductive detectors and 700 ps for silicon-diode detectors of the K- and L-shell radiation signals, respectively. We substantially improve the relative timing of signals obtained using the oscilloscope by using an x-ray streak camera with a crystal spectrometer to monitor the L-shell line spectra and, separately, the K-shell line spectra relative to the continuum burst to better than 17 ps time resolution. This combination of instruments enabled and validated a new method by which plasma conditions in nickel and copper X-pinches can be assessed immediately before and after the ∼30 ps continuum x-ray burst produced by 370 kA hybrid X-pinches. In general, the method described here can be applied to observe otherwise highly filter-absorbed radiation in the presence of a broad spectrum of higher energy radiation by combining x-ray crystals and detectors.

4.
Sci Rep ; 13(1): 20681, 2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38001120

RESUMO

Shock Ignition is a two-step scheme to reach Inertial Confinement Fusion, where the precompressed fuel capsule is ignited by a strong shock driven by a laser pulse at an intensity in the order of [Formula: see text] W/cm[Formula: see text]. In this report we describe the results of an experiment carried out at PALS laser facility designed to investigate the origin of hot electrons in laser-plasma interaction at intensities and plasma temperatures expected for Shock Ignition. A detailed time- and spectrally-resolved characterization of Stimulated Raman Scattering and Two Plasmon Decay instabilities, as well as of the generated hot electrons, suggest that Stimulated Raman Scattering is the dominant source of hot electrons via the damping of daughter plasma waves. The temperature dependence of laser plasma instabilities was also investigated, enabled by the use of different ablator materials, suggesting that Two Plasmon Decay is damped at earlier times for higher plasma temperatures, accompanied by an earlier ignition of SRS. The identification of the predominant hot electron source and the effect of plasma temperature on laser plasma interaction, here investigated, are extremely useful for developing the mitigation strategies for reducing the impact of hot electrons on the fuel ignition.

5.
Rev Sci Instrum ; 92(11): 113303, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34852516

RESUMO

The advent of multi-PW laser facilities world-wide opens new opportunities for nuclear physics. With this perspective, we developed a neutron counter taking into account the specifics of a high-intensity laser environment. Using GEANT4 simulations and prototype testings, we report on the design of a modular neutron counter based on boron-10 enriched scintillators and a high-density polyethylene moderator. This detector has been calibrated using a plutonium-beryllium neutron source and commissioned during an actual neutron-producing laser experiment at the LULI2000 facility (France). An overall efficiency of 4.37(59)% has been demonstrated during calibration with a recovery time of a few hundred microseconds after laser-plasma interaction.

6.
Nat Commun ; 12(1): 2679, 2021 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-33976145

RESUMO

Turbulence is ubiquitous in the universe and in fluid dynamics. It influences a wide range of high energy density systems, from inertial confinement fusion to astrophysical-object evolution. Understanding this phenomenon is crucial, however, due to limitations in experimental and numerical methods in plasma systems, a complete description of the turbulent spectrum is still lacking. Here, we present the measurement of a turbulent spectrum down to micron scale in a laser-plasma experiment. We use an experimental platform, which couples a high power optical laser, an x-ray free-electron laser and a lithium fluoride crystal, to study the dynamics of a plasma flow with micrometric resolution (~1µm) over a large field of view (>1 mm2). After the evolution of a Rayleigh-Taylor unstable system, we obtain spectra, which are overall consistent with existing turbulent theory, but present unexpected features. This work paves the way towards a better understanding of numerous systems, as it allows the direct comparison of experimental results, theory and numerical simulations.

7.
Opt Express ; 29(8): 12240-12251, 2021 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-33984988

RESUMO

In a recent experimental campaign, we used laser-accelerated relativistic hot electrons to ensure heating of thin titanium wire targets up to a warm dense matter (WDM) state [EPL114, 45002 (2016)10.1209/0295-5075/114/45002]. The WDM temperature profiles along several hundred microns of the wire were inferred by using spatially resolved X-ray emission spectroscopy looking at the Ti Kα characteristic lines. A maximum temperature of ∼30 eV was reached. Our study extends this work by discussing the influence of the laser parameters on temperature profiles and the optimisation of WDM wire-based generation. The depth of wire heating may reach several hundreds of microns and it is proven to be strictly dependent on the laser intensity. At the same time, it is quantitatively demonstrated that the maximum WDM temperature doesn't appear to be sensitive to the laser intensity and mainly depends on the deposited laser energy considering ranges of 6×1018-6×1020 W/cm2 and 50-200 J.

8.
Nat Commun ; 12(1): 762, 2021 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-33536408

RESUMO

The shaping of astrophysical outflows into bright, dense, and collimated jets due to magnetic pressure is here investigated using laboratory experiments. Here we look at the impact on jet collimation of a misalignment between the outflow, as it stems from the source, and the magnetic field. For small misalignments, a magnetic nozzle forms and redirects the outflow in a collimated jet. For growing misalignments, this nozzle becomes increasingly asymmetric, disrupting jet formation. Our results thus suggest outflow/magnetic field misalignment to be a plausible key process regulating jet collimation in a variety of objects from our Sun's outflows to extragalatic jets. Furthermore, they provide a possible interpretation for the observed structuring of astrophysical jets. Jet modulation could be interpreted as the signature of changes over time in the outflow/ambient field angle, and the change in the direction of the jet could be the signature of changes in the direction of the ambient field.

9.
Rev Sci Instrum ; 92(12): 123505, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34972471

RESUMO

This paper demonstrates the possibility of using a new configuration of the hybrid X-pinch to produce a set of spatially and temporarily separate x-ray bursts that could be used for the radiography of dynamic events. To achieve this, a longer than normal wire is placed between the conical electrodes of the hybrid X-pinch, and a set of small spacers (fishing weights) is placed along the wire. Each subsection of the wire then acts as a unique X-pinch, producing its own radiation burst from a small (∼3 µm) spot. The timing between bursts is 20-50 ns, and each is <2 ns in duration. For comparison, if a longer wire is simply employed without spacers, hotspots of radiation occur in random positions and the time between any two bursts does not exceed 20 ns. Examples of two and three frame point-projection radiography of solid-state and plasma test objects are given.

10.
Phys Rev E ; 101(4-1): 043208, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32422777

RESUMO

The formation of high energy density matter occurs in inertial confinement fusion, astrophysical, and geophysical systems. In this context, it is important to couple as much energy as possible into a target while maintaining high density. A recent experimental campaign, using buried layer (or "sandwich" type) targets and the ultrahigh laser contrast Vulcan petawatt laser facility, resulted in 500 Mbar pressures in solid density plasmas (which corresponds to about 4.6×10^{7}J/cm^{3} energy density). The densities and temperatures of the generated plasma were measured based on the analysis of x-ray spectral line profiles and relative intensities.

11.
Phys Rev E ; 102(6-1): 063208, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33465966

RESUMO

K-shell x-ray spectra from Al wire hybrid X pinches have been studied using an x-ray streak camera with better than 0.1-ns time resolution together with a Focusing Spectrograph with Spatial Resolution (FSSR) spectrograph. High-intensity radiation with a continuumlike spectrum was observed in the subnanosecond initial phase of the x-ray pulse generated by the hybrid X pinch (HXP). The absence of spectral lines in this phase and the extremely small x-ray source size indicates the importance of radiative processes in the final phase implosion dynamics. Plasma parameters in the following phases of the HXP were determined from analysis of the line intensities. Point-projection radiography together with a slit-step wedge camera and an FSSR spectrograph without time resolution were used to show the number of radiation sources, and to give information on the time-integrated photon energy spectrum.

12.
Phys Rev Lett ; 123(20): 205001, 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31809120

RESUMO

Magnetized laser-produced plasmas are central to many novel laboratory astrophysics and inertial confinement fusion studies, as well as in industrial applications. Here we provide the first complete description of the three-dimensional dynamics of a laser-driven plasma plume expanding in a 20 T transverse magnetic field. The plasma is collimated by the magnetic field into a slender, rapidly elongating slab, whose plasma-vacuum interface is unstable to the growth of the "classical," fluidlike magnetized Rayleigh-Taylor instability.

13.
Phys Rev E ; 100(2-1): 021201, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31574771

RESUMO

We describe a platform developed on the LULI2000 laser facility to investigate the evolution of Rayleigh-Taylor instability (RTI) in scaled conditions relevant to young supernova remnants (SNRs) up to 200 years. An RT unstable interface is imaged with a short-pulse laser-driven (PICO2000) x-ray source, providing an unprecedented simultaneous high spatial (24µm) and temporal (10 ps) resolution. This experiment provides relevant data to compare with astrophysical codes, as observational data on the development of RTI at the early stage of the SNR expansion are missing. A comparison is also performed with FLASH radiative magnetohydrodynamic simulations.

14.
Rev Sci Instrum ; 90(6): 063702, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31255030

RESUMO

The response of lithium fluoride (LiF) crystal detectors to monochromatic X-rays is measured in the multi-kilo-electron-volt range. This response, as a function of the X-ray dose, is independent of photon energy with no saturation level found. The response, as a function of the incident energy flux, is found to increase for photons of lower energy due to the differing attenuation lengths of X-ray photons within the crystal. Small differences are seen between different confocal microscopes used to scan the data, suggesting the need for absolute calibration. The spatial resolution of the LiF is also measured (1.19-1.36 µm) and is found to be independent of incident photon energy. Finally, a photometric study is performed in order to assess the feasibility of using these detectors at current X-ray free electron laser and laser facilities worldwide.

15.
Sci Rep ; 9(1): 8157, 2019 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-31148567

RESUMO

Accretion processes play a crucial role in a wide variety of astrophysical systems. Of particular interest are magnetic cataclysmic variables, where, plasma flow is directed along the star's magnetic field lines onto its poles. A stationary shock is formed, several hundred kilometres above the stellar surface; a distance far too small to be resolved with today's telescopes. Here, we report the results of an analogous laboratory experiment which recreates this astrophysical system. The dynamics of the laboratory system are strongly influenced by the interplay of material, thermal, magnetic and radiative effects, allowing a steady shock to form at a constant distance from a stationary obstacle. Our results demonstrate that a significant amount of plasma is ejected in the lateral direction; a phenomenon that is under-estimated in typical magnetohydrodynamic simulations and often neglected in astrophysical models. This changes the properties of the post-shock region considerably and has important implications for many astrophysical studies.

16.
Sci Rep ; 8(1): 16407, 2018 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-30401885

RESUMO

High resolution X-ray imaging is crucial for many high energy density physics (HEDP) experiments. Recently developed techniques to improve resolution have, however, come at the cost of a decreased field of view. In this paper, an innovative experimental detector for X-ray imaging in the context of HEDP experiments with high spatial resolution, as well as a large field of view, is presented. The platform is based on coupling an X-ray backligther source with a Lithium Fluoride detector, characterized by its large dynamic range. A spatial resolution of 2 µm over a field of view greater than 2 mm2 is reported. The platform was benchmarked with both an X-ray free electron laser (XFEL) and an X-ray source produced by a short pulse laser. First, using a non-coherent short pulse laser-produced backlighter, reduced penumbra blurring, as a result of the large size of the X-ray source, is shown. Secondly, we demonstrate phase contrast imaging with a fully coherent monochromatic XFEL beam. Modeling of the absorption and phase contrast transmission of X-ray radiation passing through various targets is presented.

17.
Rev Sci Instrum ; 89(10): 10G127, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30399908

RESUMO

Talbot-Lau x-ray interferometers can map electron density gradients in High Energy Density (HED) samples. In the deflectometer configuration, it can provide refraction, attenuation, elemental composition, and scatter information from a single image. X-ray backlighters in Talbot-Lau deflectometry must meet specific requirements regarding source size and x-ray spectra, amongst others, to accurately diagnose a wide range of HED experiments. 8 keV sources produced in the high-power laser and pulsed power environment were evaluated as x-ray backlighters for Talbot-Lau x-ray deflectometry. In high-power laser experiments, K-shell emission was produced by irradiating copper targets (500 × 500 × 12.5 µm3 foils, 20 µm diameter wire, and >10 µm diameter spheres) with 30 J, 8-30 ps laser pulses and a 25 µm copper wire with a 60 J, 10 ps laser pulse. In the pulsed power environment, single (2 × 40 µm) and double (4 × 25 µm) copper x-pinches were driven at ∼1 kA/ns. Moiré fringe formation was demonstrated for all x-ray sources explored, and detector performance was evaluated for x-ray films, x-ray CCDs, and imaging plates in context of spatial resolution, x-ray emission, and fringe contrast.

18.
Sci Rep ; 8(1): 9404, 2018 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-29925882

RESUMO

The use of gas cluster media as a target for an intense femtosecond laser pulses is considered to be uniquely convenient approach for the development of a compact versatile pulsed source of ionizing radiation. Also, one may consider cluster media as a nanolab to investigate fundamental issues of intense optical fields interaction with sub-wavelength scale structures. However, conventional diagnostic methods fail to register highly charged ion states from a cluster plasma because of strong recombination in the ambient gas. In the paper we introduce high-resolution X-ray spectroscopy method allowing to study energy spectra of highly charged ions created in the area of most intense laser radiation. The emission of CO2 clusters were analyzed in experiments with 60 fs 780 nm laser pulses of 1018 W/cm2 intensity. Theory and according X-ray spectra modeling allows to reveal the energy spectra and yield of highly charged oxygen ions. It was found that while the laser of fundamental frequency creates commonly expected monotonic ion energy spectrum, frequency doubled laser radiation initiates energy spectra featuring of distinctive quasi-monoenergetic peaks. The later would provide definite advantage in further development of laser-plasma based compact ion accelerators.

19.
Rev Sci Instrum ; 88(11): 113502, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29195347

RESUMO

Broadband, high resolution X-pinch radiography has been demonstrated as a method to view the instability induced small scale structure that develops in near solid density regions of both insulated and non-insulated cylindrical metallic liners. In experiments carried out on a 1-1.2 MA 100-200 ns rise time pulsed power generator, µm scale features were imaged in initially 16 µm thick Al foil cylindrical liners. Better resolution and contrast were obtained using an X-ray sensitive film than with image plate detectors because of the properties of the X-pinch X-ray source. We also discuss configuration variations that were made to the simple cylindrical liner geometry that appeared to maintain validity of the small-scale structure measurements while improving measurement quality.

20.
Sci Rep ; 7(1): 12144, 2017 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-28939883

RESUMO

Heating efficiently solid-density, or even compressed, matter has been a long-sought goal in order to allow investigation of the properties of such state of matter of interest for various domains, e.g. astrophysics. High-power lasers, pinches, and more recently Free-Electron-Lasers (FELs) have been used in this respect. Here we show that by using the high-power, high-contrast "PEARL" laser (Institute of Applied Physics-Russian Academy of Science, Nizhny Novgorod, Russia) delivering 7.5 J in a 60 fs laser pulse, such coupling can be efficiently obtained, resulting in heating of a slab of solid-density Al of 0.8 µm thickness at a temperature of 300 eV, and with minimal density gradients. The characterization of the target heating is achieved combining X-ray spectrometry and measurement of the protons accelerated from the Al slab. The measured heating conditions are consistent with a three-temperatures model that simulates resistive and collisional heating of the bulk induced by the hot electrons. Such effective laser energy deposition is achieved owing to the intrinsic high contrast of the laser which results from the Optical Parametric Chirped Pulse Amplification technology it is based on, allowing to attain high target temperatures in a very compact manner, e.g. in comparison with large-scale FEL facilities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA